Image
Thomas Montine, MD, PhD

Thomas Montine, MD, PhD

Professor, Pathology
Member, Bio-X
Member, Wu Tsai Neurosciences Institute
Board Certification: American Board of Pathology, Neuropathology (1997)
Board Certification: American Board of Pathology, Anatomic Pathology (1997)
Residency: Duke University Hospital (1995) NC
Residency: Duke University Hospital (1994) NC
Internship: Duke University Medical Center (1992) NC
Medical Education: McGill University Faculty of Medicine (1991) Canada
Dr. Montine received his education at Columbia University (BA in Chemistry), the University of Rochester (PhD in Pharmacology), and McGill University (MD and CM). His postgraduate medical training was at Duke University, and he was junior faculty at Vanderbilt University where he was awarded the Thorne Professorship in Pathology. In 2002, Dr. Montine was appointed as the Alvord Endowed Professor in Neuropathology and Director of the Division of Neuropathology at the University of Washington. He was Director of the University of Washington Alzheimer’s Disease Research Center, one of the original 10 Centers in the US, and passed that responsibility to able colleagues. Dr. Montine was the founding Director of the Pacific Udall Center, a NINDS-funded Morris K. Udall Centers of Excellence for Parkinson’s Disease Research. In 2010, Dr. Montine was appointed Chair of the Department of Pathology at the University of Washington. In 2016, Dr. Montine was appointed Chair of the Department of Pathology at Stanford University where he is the Stanford Medicine Endowed Professor in Pathology.

The focus of the Montine Laboratory is on the structural and molecular bases of cognitive impairment. The Montine Laboratory addresses this prevalent, unmet medical need through a combination of neuropathology, biomarkers for detection and progression of early disease, and experimental studies that test hypotheses concerning specific mechanisms of neuron injury and then develop novel approaches to neuroprotection. Our current approaches include small molecule precision therapeutics and cell replacement strategies for brain.